ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.41 Structured version   GIF version

Theorem pm2.41 680
Description: Theorem *2.41 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.41 ((ψ (φ ψ)) → (φ ψ))

Proof of Theorem pm2.41
StepHypRef Expression
1 olc 619 . 2 (ψ → (φ ψ))
2 id 19 . 2 ((φ ψ) → (φ ψ))
31, 2jaoi 623 1 ((ψ (φ ψ)) → (φ ψ))
Colors of variables: wff set class
Syntax hints:  wi 4   wo 616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator