ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.31 Structured version   GIF version

Theorem pm2.31 684
Description: Theorem *2.31 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.31 ((φ (ψ χ)) → ((φ ψ) χ))

Proof of Theorem pm2.31
StepHypRef Expression
1 orass 683 . 2 (((φ ψ) χ) ↔ (φ (ψ χ)))
21biimpri 124 1 ((φ (ψ χ)) → ((φ ψ) χ))
Colors of variables: wff set class
Syntax hints:  wi 4   wo 628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator