ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.27 Structured version   GIF version

Theorem pm2.27 35
Description: This theorem, called "Assertion," can be thought of as closed form of modus ponens ax-mp 7. Theorem *2.27 of [WhiteheadRussell] p. 104. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pm2.27 (φ → ((φψ) → ψ))

Proof of Theorem pm2.27
StepHypRef Expression
1 id 19 . 2 ((φψ) → (φψ))
21com12 27 1 (φ → ((φψ) → ψ))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7
This theorem is referenced by:  pm2.43  47  com23  72  biimt  230  pm3.35  329  pm3.2im  565  mth8  578  pm2.65  584  condc  748  annimim  781  pm2.26dc  812  ax10o  1600  issref  4650  acexmidlem2  5452  bj-inf2vnlem1  9354  bj-findis  9363
  Copyright terms: Public domain W3C validator