ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm13.181 Structured version   GIF version

Theorem pm13.181 2281
Description: Theorem *13.181 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.181 ((A = B B𝐶) → A𝐶)

Proof of Theorem pm13.181
StepHypRef Expression
1 eqcom 2039 . 2 (A = BB = A)
2 pm13.18 2280 . 2 ((B = A B𝐶) → A𝐶)
31, 2sylanb 268 1 ((A = B B𝐶) → A𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1242  wne 2201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1333  ax-gen 1335  ax-4 1397  ax-17 1416  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-cleq 2030  df-ne 2203
This theorem is referenced by:  fzprval  8694
  Copyright terms: Public domain W3C validator