Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > php5fin | GIF version |
Description: A finite set is not equinumerous to a set which adds one element. (Contributed by Jim Kingdon, 13-Sep-2021.) |
Ref | Expression |
---|---|
php5fin | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6241 | . . . 4 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
2 | 1 | biimpi 113 | . . 3 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
3 | 2 | adantr 261 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
4 | php5 6321 | . . . 4 ⊢ (𝑛 ∈ ω → ¬ 𝑛 ≈ suc 𝑛) | |
5 | 4 | ad2antrl 459 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ¬ 𝑛 ≈ suc 𝑛) |
6 | enen1 6311 | . . . . 5 ⊢ (𝐴 ≈ 𝑛 → (𝐴 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ (𝐴 ∪ {𝐵}))) | |
7 | 6 | ad2antll 460 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ (𝐴 ∪ {𝐵}))) |
8 | fiunsnnn 6338 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑛) | |
9 | enen2 6312 | . . . . 5 ⊢ ((𝐴 ∪ {𝐵}) ≈ suc 𝑛 → (𝑛 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ suc 𝑛)) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝑛 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ suc 𝑛)) |
11 | 7, 10 | bitrd 177 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ suc 𝑛)) |
12 | 5, 11 | mtbird 598 | . 2 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵})) |
13 | 3, 12 | rexlimddv 2437 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵})) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ↔ wb 98 ∈ wcel 1393 ∃wrex 2307 Vcvv 2557 ∖ cdif 2914 ∪ cun 2915 {csn 3375 class class class wbr 3764 suc csuc 4102 ωcom 4313 ≈ cen 6219 Fincfn 6221 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-3or 886 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-br 3765 df-opab 3819 df-tr 3855 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-1o 6001 df-er 6106 df-en 6222 df-fin 6224 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |