ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nnnn GIF version

Theorem peano2nnnn 6929
Description: A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 7926 designed for real number axioms which involve to natural numbers (notably, axcaucvg 6974). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
peano1nnnn.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Assertion
Ref Expression
peano2nnnn (𝐴𝑁 → (𝐴 + 1) ∈ 𝑁)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑥)   𝑁(𝑥,𝑦)

Proof of Theorem peano2nnnn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 peano1nnnn.n . . . . . 6 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
21eleq2i 2104 . . . . 5 (𝐴𝑁𝐴 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
3 elintg 3623 . . . . 5 (𝐴𝑁 → (𝐴 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧))
42, 3syl5bb 181 . . . 4 (𝐴𝑁 → (𝐴𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧))
54ibi 165 . . 3 (𝐴𝑁 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧)
6 vex 2560 . . . . . . . 8 𝑧 ∈ V
7 eleq2 2101 . . . . . . . . 9 (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧))
8 eleq2 2101 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧))
98raleqbi1dv 2513 . . . . . . . . 9 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
107, 9anbi12d 442 . . . . . . . 8 (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)))
116, 10elab 2687 . . . . . . 7 (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
1211simprbi 260 . . . . . 6 (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)
13 oveq1 5519 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦 + 1) = (𝐴 + 1))
1413eleq1d 2106 . . . . . . 7 (𝑦 = 𝐴 → ((𝑦 + 1) ∈ 𝑧 ↔ (𝐴 + 1) ∈ 𝑧))
1514rspcva 2654 . . . . . 6 ((𝐴𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → (𝐴 + 1) ∈ 𝑧)
1612, 15sylan2 270 . . . . 5 ((𝐴𝑧𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}) → (𝐴 + 1) ∈ 𝑧)
1716expcom 109 . . . 4 (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝐴𝑧 → (𝐴 + 1) ∈ 𝑧))
1817ralimia 2382 . . 3 (∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)
195, 18syl 14 . 2 (𝐴𝑁 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)
20 df-1 6897 . . . . 5 1 = ⟨1R, 0R
21 1sr 6836 . . . . . 6 1RR
22 0r 6835 . . . . . 6 0RR
23 opexg 3964 . . . . . 6 ((1RR ∧ 0RR) → ⟨1R, 0R⟩ ∈ V)
2421, 22, 23mp2an 402 . . . . 5 ⟨1R, 0R⟩ ∈ V
2520, 24eqeltri 2110 . . . 4 1 ∈ V
26 addvalex 6920 . . . 4 ((𝐴𝑁 ∧ 1 ∈ V) → (𝐴 + 1) ∈ V)
2725, 26mpan2 401 . . 3 (𝐴𝑁 → (𝐴 + 1) ∈ V)
281eleq2i 2104 . . . 4 ((𝐴 + 1) ∈ 𝑁 ↔ (𝐴 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
29 elintg 3623 . . . 4 ((𝐴 + 1) ∈ V → ((𝐴 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧))
3028, 29syl5bb 181 . . 3 ((𝐴 + 1) ∈ V → ((𝐴 + 1) ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧))
3127, 30syl 14 . 2 (𝐴𝑁 → ((𝐴 + 1) ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧))
3219, 31mpbird 156 1 (𝐴𝑁 → (𝐴 + 1) ∈ 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  {cab 2026  wral 2306  Vcvv 2557  cop 3378   cint 3615  (class class class)co 5512  Rcnr 6395  0Rc0r 6396  1Rc1r 6397  1c1 6890   + caddc 6892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-enr 6811  df-nr 6812  df-0r 6816  df-1r 6817  df-c 6895  df-1 6897  df-add 6900
This theorem is referenced by:  nnindnn  6967
  Copyright terms: Public domain W3C validator