![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > p0ex | GIF version |
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
p0ex | ⊢ {∅} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw0 3511 | . 2 ⊢ 𝒫 ∅ = {∅} | |
2 | 0ex 3884 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | pwex 3932 | . 2 ⊢ 𝒫 ∅ ∈ V |
4 | 1, 3 | eqeltrri 2111 | 1 ⊢ {∅} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 Vcvv 2557 ∅c0 3224 𝒫 cpw 3359 {csn 3375 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 |
This theorem is referenced by: pp0ex 3940 ordtriexmidlem 4245 ontr2exmid 4250 onsucsssucexmid 4252 onsucelsucexmid 4255 regexmidlemm 4257 ordsoexmid 4286 ordtri2or2exmid 4296 opthprc 4391 acexmidlema 5503 acexmidlem2 5509 tposexg 5873 2dom 6285 endisj 6298 ssfiexmid 6336 |
Copyright terms: Public domain | W3C validator |