Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovresd | GIF version |
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ovresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
ovresd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
Ref | Expression |
---|---|
ovresd | ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | ovresd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
3 | ovres 5640 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
4 | 1, 2, 3 | syl2anc 391 | 1 ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ∈ wcel 1393 × cxp 4343 ↾ cres 4347 (class class class)co 5512 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-xp 4351 df-res 4357 df-iota 4867 df-fv 4910 df-ov 5515 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |