ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt2 GIF version

Theorem ovmpt2 5636
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovmpt2g.1 (𝑥 = 𝐴𝑅 = 𝐺)
ovmpt2g.2 (𝑦 = 𝐵𝐺 = 𝑆)
ovmpt2g.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
ovmpt2.4 𝑆 ∈ V
Assertion
Ref Expression
ovmpt2 ((𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem ovmpt2
StepHypRef Expression
1 ovmpt2.4 . 2 𝑆 ∈ V
2 ovmpt2g.1 . . 3 (𝑥 = 𝐴𝑅 = 𝐺)
3 ovmpt2g.2 . . 3 (𝑦 = 𝐵𝐺 = 𝑆)
4 ovmpt2g.3 . . 3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
52, 3, 4ovmpt2g 5635 . 2 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆)
61, 5mp3an3 1221 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  Vcvv 2557  (class class class)co 5512  cmpt2 5514
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517
This theorem is referenced by:  ixxval  8765  fzval  8876
  Copyright terms: Public domain W3C validator