ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovid GIF version

Theorem ovid 5617
Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovid.1 ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)
ovid.2 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ovid ((𝑥𝑅𝑦𝑆) → ((𝑥𝐹𝑦) = 𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovid
StepHypRef Expression
1 df-ov 5515 . . 3 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
21eqeq1i 2047 . 2 ((𝑥𝐹𝑦) = 𝑧 ↔ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)
3 ovid.1 . . . . . 6 ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)
43fnoprab 5604 . . . . 5 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}
5 ovid.2 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
65fneq1i 4993 . . . . 5 (𝐹 Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ↔ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
74, 6mpbir 134 . . . 4 𝐹 Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}
8 opabid 3994 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ↔ (𝑥𝑅𝑦𝑆))
98biimpri 124 . . . 4 ((𝑥𝑅𝑦𝑆) → ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
10 fnopfvb 5215 . . . 4 ((𝐹 Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ∧ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}) → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹))
117, 9, 10sylancr 393 . . 3 ((𝑥𝑅𝑦𝑆) → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹))
125eleq2i 2104 . . . . 5 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})
13 oprabid 5537 . . . . 5 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝑥𝑅𝑦𝑆) ∧ 𝜑))
1412, 13bitri 173 . . . 4 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹 ↔ ((𝑥𝑅𝑦𝑆) ∧ 𝜑))
1514baib 828 . . 3 ((𝑥𝑅𝑦𝑆) → (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹𝜑))
1611, 15bitrd 177 . 2 ((𝑥𝑅𝑦𝑆) → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧𝜑))
172, 16syl5bb 181 1 ((𝑥𝑅𝑦𝑆) → ((𝑥𝐹𝑦) = 𝑧𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  ∃!weu 1900  cop 3378  {copab 3817   Fn wfn 4897  cfv 4902  (class class class)co 5512  {coprab 5513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910  df-ov 5515  df-oprab 5516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator