ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim1d Structured version   GIF version

Theorem orim1d 700
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (φ → (ψχ))
Assertion
Ref Expression
orim1d (φ → ((ψ θ) → (χ θ)))

Proof of Theorem orim1d
StepHypRef Expression
1 orim1d.1 . 2 (φ → (ψχ))
2 idd 21 . 2 (φ → (θθ))
31, 2orim12d 699 1 (φ → ((ψ θ) → (χ θ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wo 628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  pm2.38  715  pm2.73  718  pm2.74  719  pm2.8  722  pm2.82  724  unss1  3106  acexmidlemcase  5450  nn0ge2m1nn  7998
  Copyright terms: Public domain W3C validator