ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ori Structured version   GIF version

Theorem ori 641
Description: Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypothesis
Ref Expression
ori.1 (φ ψ)
Assertion
Ref Expression
ori φψ)

Proof of Theorem ori
StepHypRef Expression
1 ori.1 . 2 (φ ψ)
2 pm2.53 640 . 2 ((φ ψ) → (¬ φψ))
31, 2ax-mp 7 1 φψ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   wo 628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 629
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  3ori  1194  mtp-xor  1313  mtp-or  1314  ax-12  1399  sbal1yz  1874  dvelimALT  1883  dvelimfv  1884
  Copyright terms: Public domain W3C validator