ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orel2 Structured version   GIF version

Theorem orel2 632
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.)
Assertion
Ref Expression
orel2 φ → ((ψ φ) → ψ))

Proof of Theorem orel2
StepHypRef Expression
1 idd 21 . 2 φ → (ψψ))
2 pm2.21 535 . 2 φ → (φψ))
31, 2jaod 624 1 φ → ((ψ φ) → ψ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   wo 616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 533  ax-io 617
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  biorfi  652  pm2.64  701  pm5.71dc  854  ecased  1222  19.30dc  1496  dveeq2  1674  prel12  3512  funun  4866
  Copyright terms: Public domain W3C validator