![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordon | GIF version |
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
ordon | ⊢ Ord On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tron 4119 | . 2 ⊢ Tr On | |
2 | df-on 4105 | . . . . 5 ⊢ On = {𝑥 ∣ Ord 𝑥} | |
3 | 2 | abeq2i 2148 | . . . 4 ⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
4 | ordtr 4115 | . . . 4 ⊢ (Ord 𝑥 → Tr 𝑥) | |
5 | 3, 4 | sylbi 114 | . . 3 ⊢ (𝑥 ∈ On → Tr 𝑥) |
6 | 5 | rgen 2374 | . 2 ⊢ ∀𝑥 ∈ On Tr 𝑥 |
7 | dford3 4104 | . 2 ⊢ (Ord On ↔ (Tr On ∧ ∀𝑥 ∈ On Tr 𝑥)) | |
8 | 1, 6, 7 | mpbir2an 849 | 1 ⊢ Ord On |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 ∀wral 2306 Tr wtr 3854 Ord word 4099 Oncon0 4100 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-in 2924 df-ss 2931 df-uni 3581 df-tr 3855 df-iord 4103 df-on 4105 |
This theorem is referenced by: ssorduni 4213 limon 4239 onprc 4276 |
Copyright terms: Public domain | W3C validator |