ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordge1n0im Structured version   GIF version

Theorem ordge1n0im 5932
Description: An ordinal greater than or equal to 1 is nonzero. (Contributed by Jim Kingdon, 26-Jun-2019.)
Assertion
Ref Expression
ordge1n0im (Ord A → (1𝑜AA ≠ ∅))

Proof of Theorem ordge1n0im
StepHypRef Expression
1 ordgt0ge1 5931 . 2 (Ord A → (∅ A ↔ 1𝑜A))
2 ne0i 3205 . 2 (∅ AA ≠ ∅)
31, 2syl6bir 153 1 (Ord A → (1𝑜AA ≠ ∅))
Colors of variables: wff set class
Syntax hints:  wi 4   wcel 1374  wne 2186  wss 2892  c0 3199  Ord word 4046  1𝑜c1o 5907
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004  ax-nul 3855
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ne 2188  df-ral 2287  df-rex 2288  df-v 2535  df-dif 2895  df-un 2897  df-in 2899  df-ss 2906  df-nul 3200  df-pw 3334  df-sn 3354  df-uni 3553  df-tr 3827  df-iord 4050  df-on 4052  df-suc 4055  df-1o 5914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator