Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddi Structured version   GIF version

Theorem orddi 732
 Description: Double distributive law for disjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
orddi (((φ ψ) (χ θ)) ↔ (((φ χ) (φ θ)) ((ψ χ) (ψ θ))))

Proof of Theorem orddi
StepHypRef Expression
1 ordir 729 . 2 (((φ ψ) (χ θ)) ↔ ((φ (χ θ)) (ψ (χ θ))))
2 ordi 728 . . 3 ((φ (χ θ)) ↔ ((φ χ) (φ θ)))
3 ordi 728 . . 3 ((ψ (χ θ)) ↔ ((ψ χ) (ψ θ)))
42, 3anbi12i 433 . 2 (((φ (χ θ)) (ψ (χ θ))) ↔ (((φ χ) (φ θ)) ((ψ χ) (ψ θ))))
51, 4bitri 173 1 (((φ ψ) (χ θ)) ↔ (((φ χ) (φ θ)) ((ψ χ) (ψ θ))))
 Colors of variables: wff set class Syntax hints:   ∧ wa 97   ↔ wb 98   ∨ wo 628 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629 This theorem depends on definitions:  df-bi 110 This theorem is referenced by:  prneimg  3536
 Copyright terms: Public domain W3C validator