Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprc1 GIF version

Theorem opprc1 3571
 Description: Expansion of an ordered pair when the first member is a proper class. See also opprc 3570. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc1 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)

Proof of Theorem opprc1
StepHypRef Expression
1 simpl 102 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
21con3i 562 . 2 𝐴 ∈ V → ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 opprc 3570 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
42, 3syl 14 1 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   = wceq 1243   ∈ wcel 1393  Vcvv 2557  ∅c0 3224  ⟨cop 3378 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-nul 3225  df-op 3384 This theorem is referenced by:  brprcneu  5171
 Copyright terms: Public domain W3C validator