![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opi1 | GIF version |
Description: One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opi1.1 | ⊢ 𝐴 ∈ V |
opi1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opi1 | ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opi1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | snexgOLD 3935 | . . . 4 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
3 | 1, 2 | ax-mp 7 | . . 3 ⊢ {𝐴} ∈ V |
4 | 3 | prid1 3476 | . 2 ⊢ {𝐴} ∈ {{𝐴}, {𝐴, 𝐵}} |
5 | opi1.2 | . . 3 ⊢ 𝐵 ∈ V | |
6 | 1, 5 | dfop 3548 | . 2 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
7 | 4, 6 | eleqtrri 2113 | 1 ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 Vcvv 2557 {csn 3375 {cpr 3376 〈cop 3378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 |
This theorem is referenced by: opth1 3973 opth 3974 |
Copyright terms: Public domain | W3C validator |