ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeqex GIF version

Theorem opeqex 3986
Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.)
Assertion
Ref Expression
opeqex (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)))

Proof of Theorem opeqex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2101 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝑥 ∈ ⟨𝐶, 𝐷⟩))
21exbidv 1706 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ ∃𝑥 𝑥 ∈ ⟨𝐶, 𝐷⟩))
3 opm 3971 . 2 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 opm 3971 . 2 (∃𝑥 𝑥 ∈ ⟨𝐶, 𝐷⟩ ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))
52, 3, 43bitr3g 211 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wex 1381  wcel 1393  Vcvv 2557  cop 3378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384
This theorem is referenced by:  epelg  4027
  Copyright terms: Public domain W3C validator