Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1sta GIF version

Theorem op1sta 4802
 Description: Extract the first member of an ordered pair. (See op2nda 4805 to extract the second member and op1stb 4209 for an alternate version.) (Contributed by Raph Levien, 4-Dec-2003.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op1sta dom {⟨𝐴, 𝐵⟩} = 𝐴

Proof of Theorem op1sta
StepHypRef Expression
1 cnvsn.2 . . . 4 𝐵 ∈ V
21dmsnop 4794 . . 3 dom {⟨𝐴, 𝐵⟩} = {𝐴}
32unieqi 3590 . 2 dom {⟨𝐴, 𝐵⟩} = {𝐴}
4 cnvsn.1 . . 3 𝐴 ∈ V
54unisn 3596 . 2 {𝐴} = 𝐴
63, 5eqtri 2060 1 dom {⟨𝐴, 𝐵⟩} = 𝐴
 Colors of variables: wff set class Syntax hints:   = wceq 1243   ∈ wcel 1393  Vcvv 2557  {csn 3375  ⟨cop 3378  ∪ cuni 3580  dom cdm 4345 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-dm 4355 This theorem is referenced by:  op1st  5773  fo1st  5784  f1stres  5786  xpassen  6304  xpdom2  6305
 Copyright terms: Public domain W3C validator