Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  onunisuci GIF version

Theorem onunisuci 4169
 Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onunisuci suc 𝐴 = 𝐴

Proof of Theorem onunisuci
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21ontrci 4164 . 2 Tr 𝐴
31elexi 2567 . . 3 𝐴 ∈ V
43unisuc 4150 . 2 (Tr 𝐴 suc 𝐴 = 𝐴)
52, 4mpbi 133 1 suc 𝐴 = 𝐴
 Colors of variables: wff set class Syntax hints:   = wceq 1243   ∈ wcel 1393  ∪ cuni 3580  Tr wtr 3854  Oncon0 4100  suc csuc 4102 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-uni 3581  df-tr 3855  df-iord 4103  df-on 4105  df-suc 4108 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator