Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onun2i | GIF version |
Description: The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) (Constructive proof by Jim Kingdon, 25-Jul-2019.) |
Ref | Expression |
---|---|
onun2i.1 | ⊢ 𝐴 ∈ On |
onun2i.2 | ⊢ 𝐵 ∈ On |
Ref | Expression |
---|---|
onun2i | ⊢ (𝐴 ∪ 𝐵) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onun2i.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | onun2i.2 | . 2 ⊢ 𝐵 ∈ On | |
3 | onun2 4216 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) | |
4 | 1, 2, 3 | mp2an 402 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ On |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 ∪ cun 2915 Oncon0 4100 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-pr 3382 df-uni 3581 df-tr 3855 df-iord 4103 df-on 4105 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |