Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsuci GIF version

Theorem onsuci 4242
 Description: The successor of an ordinal number is an ordinal number. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
onssi.1 𝐴 ∈ On
Assertion
Ref Expression
onsuci suc 𝐴 ∈ On

Proof of Theorem onsuci
StepHypRef Expression
1 onssi.1 . 2 𝐴 ∈ On
2 suceloni 4227 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
31, 2ax-mp 7 1 suc 𝐴 ∈ On
 Colors of variables: wff set class Syntax hints:   ∈ wcel 1393  Oncon0 4100  suc csuc 4102 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-uni 3581  df-tr 3855  df-iord 4103  df-on 4105  df-suc 4108 This theorem is referenced by:  ordtri2orexmid  4248  onsucsssucexmid  4252  ordsoexmid  4286  ordtri2or2exmid  4296  tfr0  5937  1on  6008  2on  6009  3on  6011  4on  6012  prarloclemarch2  6517
 Copyright terms: Public domain W3C validator