ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsuci Structured version   GIF version

Theorem onsuci 4207
Description: The successor of an ordinal number is an ordinal number. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
onssi.1 A On
Assertion
Ref Expression
onsuci suc A On

Proof of Theorem onsuci
StepHypRef Expression
1 onssi.1 . 2 A On
2 suceloni 4193 . 2 (A On → suc A On)
31, 2ax-mp 7 1 suc A On
Colors of variables: wff set class
Syntax hints:   wcel 1390  Oncon0 4066  suc csuc 4068
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935  ax-un 4136
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-uni 3572  df-tr 3846  df-iord 4069  df-on 4071  df-suc 4074
This theorem is referenced by:  ordtri2orexmid  4211  onsucsssucexmid  4212  ordsoexmid  4240  tfr0  5878  1on  5947  2on  5948  3on  5950  4on  5951  prarloclemarch2  6402
  Copyright terms: Public domain W3C validator