Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onpsssuc | GIF version |
Description: An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
onpsssuc | ⊢ (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4266 | . . . 4 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | sucidg 4153 | . . . . 5 ⊢ (𝐴 ∈ On → 𝐴 ∈ suc 𝐴) | |
3 | eleq2 2101 | . . . . 5 ⊢ (𝐴 = suc 𝐴 → (𝐴 ∈ 𝐴 ↔ 𝐴 ∈ suc 𝐴)) | |
4 | 2, 3 | syl5ibrcom 146 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 = suc 𝐴 → 𝐴 ∈ 𝐴)) |
5 | 1, 4 | mtoi 590 | . . 3 ⊢ (𝐴 ∈ On → ¬ 𝐴 = suc 𝐴) |
6 | sssucid 4152 | . . 3 ⊢ 𝐴 ⊆ suc 𝐴 | |
7 | 5, 6 | jctil 295 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ⊆ suc 𝐴 ∧ ¬ 𝐴 = suc 𝐴)) |
8 | dfpss2 3029 | . 2 ⊢ (𝐴 ⊊ suc 𝐴 ↔ (𝐴 ⊆ suc 𝐴 ∧ ¬ 𝐴 = suc 𝐴)) | |
9 | 7, 8 | sylibr 137 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 = wceq 1243 ∈ wcel 1393 ⊆ wss 2917 ⊊ wpss 2918 Oncon0 4100 suc csuc 4102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pss 2933 df-sn 3381 df-suc 4108 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |