Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onnmin | GIF version |
Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) (Constructive proof by Mario Carneiro and Jim Kingdon, 21-Jul-2019.) |
Ref | Expression |
---|---|
onnmin | ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 3630 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝐵) | |
2 | elirr 4266 | . . . 4 ⊢ ¬ 𝐵 ∈ 𝐵 | |
3 | ssel 2939 | . . . 4 ⊢ (∩ 𝐴 ⊆ 𝐵 → (𝐵 ∈ ∩ 𝐴 → 𝐵 ∈ 𝐵)) | |
4 | 2, 3 | mtoi 590 | . . 3 ⊢ (∩ 𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ ∩ 𝐴) |
5 | 1, 4 | syl 14 | . 2 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ ∩ 𝐴) |
6 | 5 | adantl 262 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ∈ wcel 1393 ⊆ wss 2917 ∩ cint 3615 Oncon0 4100 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-sn 3381 df-int 3616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |