ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oneli Structured version   GIF version

Theorem oneli 4131
Description: A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1 A On
Assertion
Ref Expression
oneli (B AB On)

Proof of Theorem oneli
StepHypRef Expression
1 on.1 . 2 A On
2 onelon 4087 . 2 ((A On B A) → B On)
31, 2mpan 400 1 (B AB On)
Colors of variables: wff set class
Syntax hints:  wi 4   wcel 1390  Oncon0 4066
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-in 2918  df-ss 2925  df-uni 3572  df-tr 3846  df-iord 4069  df-on 4071
This theorem is referenced by:  nnon  4275
  Copyright terms: Public domain W3C validator