Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofexg | GIF version |
Description: A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014.) |
Ref | Expression |
---|---|
ofexg | ⊢ (𝐴 ∈ 𝑉 → ( ∘𝑓 𝑅 ↾ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-of 5712 | . . 3 ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
2 | 1 | mpt2fun 5603 | . 2 ⊢ Fun ∘𝑓 𝑅 |
3 | resfunexg 5382 | . 2 ⊢ ((Fun ∘𝑓 𝑅 ∧ 𝐴 ∈ 𝑉) → ( ∘𝑓 𝑅 ↾ 𝐴) ∈ V) | |
4 | 2, 3 | mpan 400 | 1 ⊢ (𝐴 ∈ 𝑉 → ( ∘𝑓 𝑅 ↾ 𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1393 Vcvv 2557 ∩ cin 2916 ↦ cmpt 3818 dom cdm 4345 ↾ cres 4347 Fun wfun 4896 ‘cfv 4902 (class class class)co 5512 ∘𝑓 cof 5710 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-oprab 5516 df-mpt2 5517 df-of 5712 |
This theorem is referenced by: ofmresex 5764 |
Copyright terms: Public domain | W3C validator |