ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oafnex Structured version   GIF version

Theorem oafnex 5935
Description: The characteristic function for ordinal addition is defined everywhere. (Contributed by Jim Kingdon, 27-Jul-2019.)
Assertion
Ref Expression
oafnex (x V ↦ suc x) Fn V

Proof of Theorem oafnex
StepHypRef Expression
1 vex 2534 . . 3 x V
21sucex 4171 . 2 suc x V
3 eqid 2018 . 2 (x V ↦ suc x) = (x V ↦ suc x)
42, 3fnmpti 4949 1 (x V ↦ suc x) Fn V
Colors of variables: wff set class
Syntax hints:  Vcvv 2531  cmpt 3788  suc csuc 4047   Fn wfn 4820
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-10 1373  ax-11 1374  ax-i12 1375  ax-bnd 1376  ax-4 1377  ax-13 1381  ax-14 1382  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-i5r 1406  ax-ext 2000  ax-sep 3845  ax-pow 3897  ax-pr 3914  ax-un 4116
This theorem depends on definitions:  df-bi 110  df-3an 873  df-tru 1229  df-nf 1326  df-sb 1624  df-eu 1881  df-mo 1882  df-clab 2005  df-cleq 2011  df-clel 2014  df-nfc 2145  df-ral 2285  df-rex 2286  df-v 2533  df-un 2895  df-in 2897  df-ss 2904  df-pw 3332  df-sn 3352  df-pr 3353  df-op 3355  df-uni 3551  df-br 3735  df-opab 3789  df-mpt 3790  df-id 4000  df-suc 4053  df-xp 4274  df-rel 4275  df-cnv 4276  df-co 4277  df-dm 4278  df-fun 4827  df-fn 4828
This theorem is referenced by:  fnoa  5938  oaexg  5939  oav  5945  oacl  5951  oav2  5954  oawordi  5960
  Copyright terms: Public domain W3C validator