Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nummul2c | GIF version |
Description: The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
nummul1c.1 | ⊢ 𝑇 ∈ ℕ0 |
nummul1c.2 | ⊢ 𝑃 ∈ ℕ0 |
nummul1c.3 | ⊢ 𝐴 ∈ ℕ0 |
nummul1c.4 | ⊢ 𝐵 ∈ ℕ0 |
nummul1c.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) |
nummul1c.6 | ⊢ 𝐷 ∈ ℕ0 |
nummul1c.7 | ⊢ 𝐸 ∈ ℕ0 |
nummul2c.7 | ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 |
nummul2c.8 | ⊢ (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷) |
Ref | Expression |
---|---|
nummul2c | ⊢ (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nummul1c.5 | . . . 4 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) | |
2 | nummul1c.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
3 | nummul1c.3 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
4 | nummul1c.4 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
5 | 2, 3, 4 | numcl 8378 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
6 | 1, 5 | eqeltri 2110 | . . 3 ⊢ 𝑁 ∈ ℕ0 |
7 | 6 | nn0cni 8193 | . 2 ⊢ 𝑁 ∈ ℂ |
8 | nummul1c.2 | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
9 | 8 | nn0cni 8193 | . 2 ⊢ 𝑃 ∈ ℂ |
10 | nummul1c.6 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
11 | nummul1c.7 | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
12 | 3 | nn0cni 8193 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
13 | 12, 9 | mulcomi 7033 | . . . . 5 ⊢ (𝐴 · 𝑃) = (𝑃 · 𝐴) |
14 | 13 | oveq1i 5522 | . . . 4 ⊢ ((𝐴 · 𝑃) + 𝐸) = ((𝑃 · 𝐴) + 𝐸) |
15 | nummul2c.7 | . . . 4 ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 | |
16 | 14, 15 | eqtri 2060 | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 |
17 | 4 | nn0cni 8193 | . . . 4 ⊢ 𝐵 ∈ ℂ |
18 | nummul2c.8 | . . . 4 ⊢ (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷) | |
19 | 9, 17, 18 | mulcomli 7034 | . . 3 ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) |
20 | 2, 8, 3, 4, 1, 10, 11, 16, 19 | nummul1c 8403 | . 2 ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
21 | 7, 9, 20 | mulcomli 7034 | 1 ⊢ (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∈ wcel 1393 (class class class)co 5512 + caddc 6892 · cmul 6894 ℕ0cn0 8181 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-setind 4262 ax-cnex 6975 ax-resscn 6976 ax-1cn 6977 ax-1re 6978 ax-icn 6979 ax-addcl 6980 ax-addrcl 6981 ax-mulcl 6982 ax-addcom 6984 ax-mulcom 6985 ax-addass 6986 ax-mulass 6987 ax-distr 6988 ax-i2m1 6989 ax-1rid 6991 ax-0id 6992 ax-rnegex 6993 ax-cnre 6995 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-iota 4867 df-fun 4904 df-fv 4910 df-riota 5468 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-sub 7184 df-inn 7915 df-n0 8182 |
This theorem is referenced by: decmul2c 8415 |
Copyright terms: Public domain | W3C validator |