ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprloc GIF version

Theorem nqprloc 6643
Description: A cut produced from a rational is located. Lemma for nqprlu 6645. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprloc (𝐴Q → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
Distinct variable group:   𝑥,𝐴,𝑟,𝑞

Proof of Theorem nqprloc
StepHypRef Expression
1 nqtri3or 6494 . . . . . . 7 ((𝑞Q𝐴Q) → (𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞))
21ancoms 255 . . . . . 6 ((𝐴Q𝑞Q) → (𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞))
32ad2antrr 457 . . . . 5 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞))
4 vex 2560 . . . . . . . . . 10 𝑞 ∈ V
5 breq1 3767 . . . . . . . . . 10 (𝑥 = 𝑞 → (𝑥 <Q 𝐴𝑞 <Q 𝐴))
64, 5elab 2687 . . . . . . . . 9 (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴)
76biimpri 124 . . . . . . . 8 (𝑞 <Q 𝐴𝑞 ∈ {𝑥𝑥 <Q 𝐴})
87orcd 652 . . . . . . 7 (𝑞 <Q 𝐴 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
98a1i 9 . . . . . 6 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 <Q 𝐴 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
10 simpr 103 . . . . . . . 8 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → 𝑞 <Q 𝑟)
11 breq1 3767 . . . . . . . 8 (𝑞 = 𝐴 → (𝑞 <Q 𝑟𝐴 <Q 𝑟))
1210, 11syl5ibcom 144 . . . . . . 7 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 = 𝐴𝐴 <Q 𝑟))
13 vex 2560 . . . . . . . . 9 𝑟 ∈ V
14 breq2 3768 . . . . . . . . 9 (𝑥 = 𝑟 → (𝐴 <Q 𝑥𝐴 <Q 𝑟))
1513, 14elab 2687 . . . . . . . 8 (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟)
16 olc 632 . . . . . . . 8 (𝑟 ∈ {𝑥𝐴 <Q 𝑥} → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
1715, 16sylbir 125 . . . . . . 7 (𝐴 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
1812, 17syl6 29 . . . . . 6 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 = 𝐴 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
19 ltsonq 6496 . . . . . . . . . 10 <Q Or Q
20 ltrelnq 6463 . . . . . . . . . 10 <Q ⊆ (Q × Q)
2119, 20sotri 4720 . . . . . . . . 9 ((𝐴 <Q 𝑞𝑞 <Q 𝑟) → 𝐴 <Q 𝑟)
2221, 17syl 14 . . . . . . . 8 ((𝐴 <Q 𝑞𝑞 <Q 𝑟) → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
2322expcom 109 . . . . . . 7 (𝑞 <Q 𝑟 → (𝐴 <Q 𝑞 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
2423adantl 262 . . . . . 6 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝐴 <Q 𝑞 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
259, 18, 243jaod 1199 . . . . 5 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → ((𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞) → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
263, 25mpd 13 . . . 4 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
2726ex 108 . . 3 (((𝐴Q𝑞Q) ∧ 𝑟Q) → (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
2827ralrimiva 2392 . 2 ((𝐴Q𝑞Q) → ∀𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
2928ralrimiva 2392 1 (𝐴Q → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wo 629  w3o 884   = wceq 1243  wcel 1393  {cab 2026  wral 2306   class class class wbr 3764  Qcnq 6378   <Q cltq 6383
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-mi 6404  df-lti 6405  df-enq 6445  df-nqqs 6446  df-ltnqqs 6451
This theorem is referenced by:  nqprxx  6644
  Copyright terms: Public domain W3C validator