Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  notnotdc Structured version   GIF version

Theorem notnotdc 759
 Description: Double negation equivalence for a decidable proposition. Like Theorem *4.13 of [WhiteheadRussell] p. 117, but with a decidability antecendent. The forward direction, notnot1 547, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 13-Mar-2018.)
Assertion
Ref Expression
notnotdc (DECID φ → (φ ↔ ¬ ¬ φ))

Proof of Theorem notnotdc
StepHypRef Expression
1 notnot1 547 . 2 (φ → ¬ ¬ φ)
2 notnot2dc 742 . 2 (DECID φ → (¬ ¬ φφ))
31, 2impbid2 131 1 (DECID φ → (φ ↔ ¬ ¬ φ))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 98  DECID wdc 733 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617 This theorem depends on definitions:  df-bi 110  df-dc 734 This theorem is referenced by:  con1biidc  764  imandc  779  imordc  789  dfbi3dc  1271  alexdc  1492
 Copyright terms: Public domain W3C validator