![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nntri2 | GIF version |
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.) |
Ref | Expression |
---|---|
nntri2 | ⊢ ((A ∈ 𝜔 ∧ B ∈ 𝜔) → (A ∈ B ↔ ¬ (A = B ∨ B ∈ A))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4224 | . . . . 5 ⊢ ¬ A ∈ A | |
2 | eleq2 2098 | . . . . 5 ⊢ (A = B → (A ∈ A ↔ A ∈ B)) | |
3 | 1, 2 | mtbii 598 | . . . 4 ⊢ (A = B → ¬ A ∈ B) |
4 | 3 | con2i 557 | . . 3 ⊢ (A ∈ B → ¬ A = B) |
5 | en2lp 4232 | . . . 4 ⊢ ¬ (A ∈ B ∧ B ∈ A) | |
6 | 5 | imnani 624 | . . 3 ⊢ (A ∈ B → ¬ B ∈ A) |
7 | ioran 668 | . . 3 ⊢ (¬ (A = B ∨ B ∈ A) ↔ (¬ A = B ∧ ¬ B ∈ A)) | |
8 | 4, 6, 7 | sylanbrc 394 | . 2 ⊢ (A ∈ B → ¬ (A = B ∨ B ∈ A)) |
9 | nntri3or 6011 | . . . . 5 ⊢ ((A ∈ 𝜔 ∧ B ∈ 𝜔) → (A ∈ B ∨ A = B ∨ B ∈ A)) | |
10 | 3orass 887 | . . . . 5 ⊢ ((A ∈ B ∨ A = B ∨ B ∈ A) ↔ (A ∈ B ∨ (A = B ∨ B ∈ A))) | |
11 | 9, 10 | sylib 127 | . . . 4 ⊢ ((A ∈ 𝜔 ∧ B ∈ 𝜔) → (A ∈ B ∨ (A = B ∨ B ∈ A))) |
12 | 11 | orcomd 647 | . . 3 ⊢ ((A ∈ 𝜔 ∧ B ∈ 𝜔) → ((A = B ∨ B ∈ A) ∨ A ∈ B)) |
13 | 12 | ord 642 | . 2 ⊢ ((A ∈ 𝜔 ∧ B ∈ 𝜔) → (¬ (A = B ∨ B ∈ A) → A ∈ B)) |
14 | 8, 13 | impbid2 131 | 1 ⊢ ((A ∈ 𝜔 ∧ B ∈ 𝜔) → (A ∈ B ↔ ¬ (A = B ∨ B ∈ A))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ↔ wb 98 ∨ wo 628 ∨ w3o 883 = wceq 1242 ∈ wcel 1390 𝜔com 4256 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-13 1401 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-nul 3874 ax-pow 3918 ax-pr 3935 ax-un 4136 ax-setind 4220 ax-iinf 4254 |
This theorem depends on definitions: df-bi 110 df-3or 885 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ne 2203 df-ral 2305 df-rex 2306 df-v 2553 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-nul 3219 df-pw 3353 df-sn 3373 df-pr 3374 df-uni 3572 df-int 3607 df-tr 3846 df-iord 4069 df-on 4071 df-suc 4074 df-iom 4257 |
This theorem is referenced by: nnaord 6018 nnmord 6026 pitric 6305 |
Copyright terms: Public domain | W3C validator |