![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nntri2 | GIF version |
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.) |
Ref | Expression |
---|---|
nntri2 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4266 | . . . . 5 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | eleq2 2101 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐴 ↔ 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | mtbii 599 | . . . 4 ⊢ (𝐴 = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
4 | 3 | con2i 557 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 = 𝐵) |
5 | en2lp 4278 | . . . 4 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) | |
6 | 5 | imnani 625 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
7 | ioran 669 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴)) | |
8 | 4, 6, 7 | sylanbrc 394 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
9 | nntri3or 6072 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
10 | 3orass 888 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ (𝐴 ∈ 𝐵 ∨ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) | |
11 | 9, 10 | sylib 127 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
12 | 11 | orcomd 648 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐴 ∈ 𝐵)) |
13 | 12 | ord 643 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐵)) |
14 | 8, 13 | impbid2 131 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ↔ wb 98 ∨ wo 629 ∨ w3o 884 = wceq 1243 ∈ wcel 1393 ωcom 4313 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-3or 886 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-uni 3581 df-int 3616 df-tr 3855 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 |
This theorem is referenced by: nnaord 6082 nnmord 6090 pitric 6419 |
Copyright terms: Public domain | W3C validator |