![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnaddm1cl | GIF version |
Description: Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nnaddm1cl | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncn 7922 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
2 | nncn 7922 | . . 3 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
3 | ax-1cn 6977 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | addsub 7222 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 𝐵) − 1) = ((𝐴 − 1) + 𝐵)) | |
5 | 3, 4 | mp3an3 1221 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 1) = ((𝐴 − 1) + 𝐵)) |
6 | 1, 2, 5 | syl2an 273 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) = ((𝐴 − 1) + 𝐵)) |
7 | nnm1nn0 8223 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0) | |
8 | nn0nnaddcl 8213 | . . 3 ⊢ (((𝐴 − 1) ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝐴 − 1) + 𝐵) ∈ ℕ) | |
9 | 7, 8 | sylan 267 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 − 1) + 𝐵) ∈ ℕ) |
10 | 6, 9 | eqeltrd 2114 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1243 ∈ wcel 1393 (class class class)co 5512 ℂcc 6887 1c1 6890 + caddc 6892 − cmin 7182 ℕcn 7914 ℕ0cn0 8181 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-setind 4262 ax-cnex 6975 ax-resscn 6976 ax-1cn 6977 ax-1re 6978 ax-icn 6979 ax-addcl 6980 ax-addrcl 6981 ax-mulcl 6982 ax-addcom 6984 ax-addass 6986 ax-distr 6988 ax-i2m1 6989 ax-0id 6992 ax-rnegex 6993 ax-cnre 6995 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-iota 4867 df-fun 4904 df-fv 4910 df-riota 5468 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-sub 7184 df-inn 7915 df-n0 8182 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |