Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0cnd GIF version

Theorem nn0cnd 8237
 Description: A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nn0red.1 (𝜑𝐴 ∈ ℕ0)
Assertion
Ref Expression
nn0cnd (𝜑𝐴 ∈ ℂ)

Proof of Theorem nn0cnd
StepHypRef Expression
1 nn0red.1 . . 3 (𝜑𝐴 ∈ ℕ0)
21nn0red 8236 . 2 (𝜑𝐴 ∈ ℝ)
32recnd 7054 1 (𝜑𝐴 ∈ ℂ)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1393  ℂcc 6887  ℕ0cn0 8181 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-cnex 6975  ax-resscn 6976  ax-1re 6978  ax-addrcl 6981  ax-rnegex 6993 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-int 3616  df-inn 7915  df-n0 8182 This theorem is referenced by:  expaddzaplem  9298  expaddzap  9299  expmulzap  9301
 Copyright terms: Public domain W3C validator