ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0addcl GIF version

Theorem nn0addcl 8215
Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
nn0addcl ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)

Proof of Theorem nn0addcl
StepHypRef Expression
1 nnsscn 7917 . 2 ℕ ⊆ ℂ
2 id 19 . . 3 (ℕ ⊆ ℂ → ℕ ⊆ ℂ)
3 df-n0 8180 . . 3 0 = (ℕ ∪ {0})
4 nnaddcl 7932 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
54adantl 262 . . 3 ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑀 + 𝑁) ∈ ℕ)
62, 3, 5un0addcl 8213 . 2 ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0)
71, 6mpan 400 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wcel 1393  wss 2917  (class class class)co 5512  cc 6885   + caddc 6890  cn 7912  0cn0 8179
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-cnex 6973  ax-resscn 6974  ax-1cn 6975  ax-1re 6976  ax-icn 6977  ax-addcl 6978  ax-addrcl 6979  ax-mulcl 6980  ax-addcom 6982  ax-addass 6984  ax-i2m1 6987  ax-0id 6990
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515  df-inn 7913  df-n0 8180
This theorem is referenced by:  nn0addcli  8217  peano2nn0  8220  nn0addcld  8237  nn0readdcl  8239  elfz0addOLD  8978  difelfznle  8991  elfzodifsumelfzo  9055  expadd  9271
  Copyright terms: Public domain W3C validator