![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ninba | GIF version |
Description: Miscellaneous inference relating falsehoods. (Contributed by NM, 31-Mar-1994.) |
Ref | Expression |
---|---|
ninba.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
ninba | ⊢ (¬ 𝜓 → (¬ 𝜑 ↔ (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ninba.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | niabn 874 | . 2 ⊢ (¬ 𝜓 → ((𝜒 ∧ 𝜓) ↔ ¬ 𝜑)) |
3 | 2 | bicomd 129 | 1 ⊢ (¬ 𝜓 → (¬ 𝜑 ↔ (𝜒 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |