Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsuc GIF version

Theorem nfsuc 4145
 Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
nfsuc.1 𝑥𝐴
Assertion
Ref Expression
nfsuc 𝑥 suc 𝐴

Proof of Theorem nfsuc
StepHypRef Expression
1 df-suc 4108 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2 nfsuc.1 . . 3 𝑥𝐴
32nfsn 3430 . . 3 𝑥{𝐴}
42, 3nfun 3099 . 2 𝑥(𝐴 ∪ {𝐴})
51, 4nfcxfr 2175 1 𝑥 suc 𝐴
 Colors of variables: wff set class Syntax hints:  Ⅎwnfc 2165   ∪ cun 2915  {csn 3375  suc csuc 4102 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-suc 4108 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator