Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfned GIF version

Theorem nfned 2298
 Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfned.1 (𝜑𝑥𝐴)
nfned.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfned (𝜑 → Ⅎ𝑥 𝐴𝐵)

Proof of Theorem nfned
StepHypRef Expression
1 df-ne 2206 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 nfned.1 . . . 4 (𝜑𝑥𝐴)
3 nfned.2 . . . 4 (𝜑𝑥𝐵)
42, 3nfeqd 2192 . . 3 (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)
54nfnd 1547 . 2 (𝜑 → Ⅎ𝑥 ¬ 𝐴 = 𝐵)
61, 5nfxfrd 1364 1 (𝜑 → Ⅎ𝑥 𝐴𝐵)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1243  Ⅎwnf 1349  Ⅎwnfc 2165   ≠ wne 2204 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-cleq 2033  df-nfc 2167  df-ne 2206 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator