Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfiotadxy | GIF version |
Description: Deduction version of nfiotaxy 4871. (Contributed by Jim Kingdon, 21-Dec-2018.) |
Ref | Expression |
---|---|
nfiotadxy.1 | ⊢ Ⅎ𝑦𝜑 |
nfiotadxy.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfiotadxy | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 4868 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)} | |
2 | nfv 1421 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
3 | nfiotadxy.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
4 | nfiotadxy.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | nfcv 2178 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
6 | nfcv 2178 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑧 | |
7 | 5, 6 | nfeq 2185 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 = 𝑧 |
8 | 7 | a1i 9 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) |
9 | 4, 8 | nfbid 1480 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) |
10 | 3, 9 | nfald 1643 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
11 | 2, 10 | nfabd 2196 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
12 | 11 | nfunid 3587 | . 2 ⊢ (𝜑 → Ⅎ𝑥∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
13 | 1, 12 | nfcxfrd 2176 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∀wal 1241 = wceq 1243 Ⅎwnf 1349 {cab 2026 Ⅎwnfc 2165 ∪ cuni 3580 ℩cio 4865 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-sn 3381 df-uni 3581 df-iota 4867 |
This theorem is referenced by: nfiotaxy 4871 nfriotadxy 5476 |
Copyright terms: Public domain | W3C validator |