![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nffrfor | GIF version |
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nffrfor.r | ⊢ Ⅎ𝑥𝑅 |
nffrfor.a | ⊢ Ⅎ𝑥𝐴 |
nffrfor.s | ⊢ Ⅎ𝑥𝑆 |
Ref | Expression |
---|---|
nffrfor | ⊢ Ⅎ𝑥 FrFor 𝑅𝐴𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frfor 4068 | . 2 ⊢ ( FrFor 𝑅𝐴𝑆 ↔ (∀𝑢 ∈ 𝐴 (∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) → 𝑢 ∈ 𝑆) → 𝐴 ⊆ 𝑆)) | |
2 | nffrfor.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2178 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑣 | |
4 | nffrfor.r | . . . . . . . 8 ⊢ Ⅎ𝑥𝑅 | |
5 | nfcv 2178 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑢 | |
6 | 3, 4, 5 | nfbr 3808 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑣𝑅𝑢 |
7 | nffrfor.s | . . . . . . . 8 ⊢ Ⅎ𝑥𝑆 | |
8 | 7 | nfcri 2172 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑣 ∈ 𝑆 |
9 | 6, 8 | nfim 1464 | . . . . . 6 ⊢ Ⅎ𝑥(𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) |
10 | 2, 9 | nfralxy 2360 | . . . . 5 ⊢ Ⅎ𝑥∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) |
11 | 7 | nfcri 2172 | . . . . 5 ⊢ Ⅎ𝑥 𝑢 ∈ 𝑆 |
12 | 10, 11 | nfim 1464 | . . . 4 ⊢ Ⅎ𝑥(∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) → 𝑢 ∈ 𝑆) |
13 | 2, 12 | nfralxy 2360 | . . 3 ⊢ Ⅎ𝑥∀𝑢 ∈ 𝐴 (∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) → 𝑢 ∈ 𝑆) |
14 | 2, 7 | nfss 2938 | . . 3 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝑆 |
15 | 13, 14 | nfim 1464 | . 2 ⊢ Ⅎ𝑥(∀𝑢 ∈ 𝐴 (∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) → 𝑢 ∈ 𝑆) → 𝐴 ⊆ 𝑆) |
16 | 1, 15 | nfxfr 1363 | 1 ⊢ Ⅎ𝑥 FrFor 𝑅𝐴𝑆 |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1349 ∈ wcel 1393 Ⅎwnfc 2165 ∀wral 2306 ⊆ wss 2917 class class class wbr 3764 FrFor wfrfor 4064 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-frfor 4068 |
This theorem is referenced by: nffr 4086 |
Copyright terms: Public domain | W3C validator |