ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfequid Structured version   GIF version

Theorem nfequid 1587
Description: Bound-variable hypothesis builder for x = x. This theorem tells us that any variable, including x, is effectively not free in x = x, even though x is technically free according to the traditional definition of free variable. (Contributed by NM, 13-Jan-2011.) (Revised by NM, 21-Aug-2017.)
Assertion
Ref Expression
nfequid y x = x

Proof of Theorem nfequid
StepHypRef Expression
1 equid 1586 . 2 x = x
21nfth 1350 1 y x = x
Colors of variables: wff set class
Syntax hints:  wnf 1346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-gen 1335  ax-ie2 1380  ax-8 1392  ax-17 1416  ax-i9 1420
This theorem depends on definitions:  df-bi 110  df-nf 1347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator