Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfdv | GIF version |
Description: Apply the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfdv.1 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Ref | Expression |
---|---|
nfdv | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
2 | 1 | alrimiv 1754 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)) |
3 | df-nf 1350 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
4 | 2, 3 | sylibr 137 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1241 Ⅎwnf 1349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-17 1419 |
This theorem depends on definitions: df-bi 110 df-nf 1350 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |