Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfa2 | GIF version |
Description: Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfa2 | ⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1434 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | 1 | nfal 1468 | 1 ⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: ∀wal 1241 Ⅎwnf 1349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-nf 1350 |
This theorem is referenced by: cbv1h 1633 csbie2t 2894 copsex2t 3982 fnoprabg 5602 strcollnft 10109 |
Copyright terms: Public domain | W3C validator |