ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nesymir Structured version   GIF version

Theorem nesymir 2246
Description: Inference associated with nesym 2244. (Contributed by BJ, 7-Jul-2018.)
Hypothesis
Ref Expression
nesymir.1 ¬ A = B
Assertion
Ref Expression
nesymir BA

Proof of Theorem nesymir
StepHypRef Expression
1 nesymir.1 . 2 ¬ A = B
2 nesym 2244 . 2 (BA ↔ ¬ A = B)
31, 2mpbir 134 1 BA
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1242  wne 2201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1333  ax-gen 1335  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-cleq 2030  df-ne 2203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator