ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nesymir GIF version

Theorem nesymir 2252
Description: Inference associated with nesym 2250. (Contributed by BJ, 7-Jul-2018.)
Hypothesis
Ref Expression
nesymir.1 ¬ 𝐴 = 𝐵
Assertion
Ref Expression
nesymir 𝐵𝐴

Proof of Theorem nesymir
StepHypRef Expression
1 nesymir.1 . 2 ¬ 𝐴 = 𝐵
2 nesym 2250 . 2 (𝐵𝐴 ↔ ¬ 𝐴 = 𝐵)
31, 2mpbir 134 1 𝐵𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1243  wne 2204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1336  ax-gen 1338  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-ne 2206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator