![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neeqtrrd | GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrrd.1 | ⊢ (φ → A ≠ B) |
neeqtrrd.2 | ⊢ (φ → 𝐶 = B) |
Ref | Expression |
---|---|
neeqtrrd | ⊢ (φ → A ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrrd.1 | . 2 ⊢ (φ → A ≠ B) | |
2 | neeqtrrd.2 | . . 3 ⊢ (φ → 𝐶 = B) | |
3 | 2 | eqcomd 2042 | . 2 ⊢ (φ → B = 𝐶) |
4 | 1, 3 | neeqtrd 2227 | 1 ⊢ (φ → A ≠ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1242 ≠ wne 2201 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-5 1333 ax-gen 1335 ax-4 1397 ax-17 1416 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-cleq 2030 df-ne 2203 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |