Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neeq2i | GIF version |
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) |
Ref | Expression |
---|---|
neeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
neeq2i | ⊢ (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | neeq2 2219 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 = wceq 1243 ≠ wne 2204 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-5 1336 ax-gen 1338 ax-4 1400 ax-17 1419 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-ne 2206 |
This theorem is referenced by: neeq12i 2222 neeqtri 2232 |
Copyright terms: Public domain | W3C validator |