ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq2d GIF version

Theorem neeq2d 2224
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.)
Hypothesis
Ref Expression
neeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
neeq2d (𝜑 → (𝐶𝐴𝐶𝐵))

Proof of Theorem neeq2d
StepHypRef Expression
1 neeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 neeq2 2219 . 2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   = wceq 1243  wne 2204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1336  ax-gen 1338  ax-4 1400  ax-17 1419  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-ne 2206
This theorem is referenced by:  neeq12d  2225  neeqtrd  2233  sqrt2irr  9878
  Copyright terms: Public domain W3C validator