ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon4aidc Structured version   GIF version

Theorem necon4aidc 2267
Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
Hypothesis
Ref Expression
necon4aidc.1 (DECID A = B → (AB → ¬ φ))
Assertion
Ref Expression
necon4aidc (DECID A = B → (φA = B))

Proof of Theorem necon4aidc
StepHypRef Expression
1 df-ne 2203 . . 3 (AB ↔ ¬ A = B)
2 necon4aidc.1 . . 3 (DECID A = B → (AB → ¬ φ))
31, 2syl5bir 142 . 2 (DECID A = B → (¬ A = B → ¬ φ))
4 condc 748 . 2 (DECID A = B → ((¬ A = B → ¬ φ) → (φA = B)))
53, 4mpd 13 1 (DECID A = B → (φA = B))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 741   = wceq 1242  wne 2201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 629
This theorem depends on definitions:  df-bi 110  df-dc 742  df-ne 2203
This theorem is referenced by:  necon4idc  2268
  Copyright terms: Public domain W3C validator