 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon1bidc Structured version   GIF version

Theorem necon1bidc 2251
 Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon1bidc.1 (DECID A = B → (ABφ))
Assertion
Ref Expression
necon1bidc (DECID A = B → (¬ φA = B))

Proof of Theorem necon1bidc
StepHypRef Expression
1 df-ne 2203 . . 3 (AB ↔ ¬ A = B)
2 necon1bidc.1 . . 3 (DECID A = B → (ABφ))
31, 2syl5bir 142 . 2 (DECID A = B → (¬ A = Bφ))
4 con1dc 752 . 2 (DECID A = B → ((¬ A = Bφ) → (¬ φA = B)))
53, 4mpd 13 1 (DECID A = B → (¬ φA = B))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4  DECID wdc 741   = wceq 1242   ≠ wne 2201 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629 This theorem depends on definitions:  df-bi 110  df-dc 742  df-ne 2203 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator