ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon1bbiddc Structured version   GIF version

Theorem necon1bbiddc 2262
Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
Hypothesis
Ref Expression
necon1bbiddc.1 (φ → (DECID A = B → (ABψ)))
Assertion
Ref Expression
necon1bbiddc (φ → (DECID A = B → (¬ ψA = B)))

Proof of Theorem necon1bbiddc
StepHypRef Expression
1 necon1bbiddc.1 . . 3 (φ → (DECID A = B → (ABψ)))
2 df-ne 2203 . . . 4 (AB ↔ ¬ A = B)
32bibi1i 217 . . 3 ((ABψ) ↔ (¬ A = Bψ))
41, 3syl6ib 150 . 2 (φ → (DECID A = B → (¬ A = Bψ)))
54con1biddc 769 1 (φ → (DECID A = B → (¬ ψA = B)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 98  DECID wdc 741   = wceq 1242  wne 2201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629
This theorem depends on definitions:  df-bi 110  df-dc 742  df-ne 2203
This theorem is referenced by:  necon2bbiddc  2266
  Copyright terms: Public domain W3C validator